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Dynamics of scroll rings in a parameter gradient
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Experimental observations of scroll rings in excitable media have shown that an externally applied param-
eter gradient can significantly alter the dynamics of the ring, leading to rotation of the plane of the ring,
variations in its rate of collapse, and distortions in its shape. Here we propose a theory to account for these
effects by extending the theory of local filament dynamics to include the influence of the parameter gradient.
Numerical simulations using the FitzHugh-Nagumo equations show that the proposed theory works well when
the differences in rotation periods at different parts of the filament are sufficiently small. When this condition
does not hold, the theory must be modified to take into account nonlocal interactions.
[S1063-651X99)10403-3

PACS numbe(s): 82.40.Ck, 82.20.Wt

[. INTRODUCTION local filament dynamicg18-21 to include an inhomoge-
neous medium with a smooth parameter gradient. In two
Excitable media describe systems ranging from the biodimensions, such a gradient induces a drift velocity of the
logical to the chemical1-5]. These systems often exhibit center of rotation[9,22,13. In three dimensions a similar
periodic excitations in the form of spiral waves. In threedrift occurs, though it may have more complicated effects on
dimensions these waves are called scroll waves, and thdfe filament motior(12,10,13. Earlier investigationg12—
rotate about a one-dimensional singularity, the filament. Inl4] have shown that gradient-induced drift can be combined
the simplest case the filament is a straight line, but it mayvith the local theory to give qualitative agreement with
also be curved; when it forms a circle, the resulting wavesimulations[12] and experimenf13,14. In the present pa-
pattern is known as a scroll ring. See Fig. 1. Most studies td®€f, We further develop this approach, obtaining a quantita-
date have concentrated on the dynamics of these waves in
homogeneous media. In natural systems, however, such as
the Belousov-ZhabotinskyBZ) chemical reaction and car-
diac tissue, the waves usually propagate in the presence of
inhomogeneitie$6,7,1,8—10. In this paper, we concentrate
on the behavior of scroll rings in the presence of a large-
scale inhomogeneity. The simplest model of such an inho-
mogeneity is a smooth parameter gradient, which can dra-
matically affect the dynamics of scroll wavé¢§l,9,7,12— z 4
15].
A scroll ring in a homogeneous excitable medium gener-
ally shrinks until it self-annihilates, and it may also drift
along its axis of symmetry; however, its axis of symmetry
remains fixed in space and the ring itself remains circular
[16,17. Recent experimental observations of scroll rings in a
BZ reaction with a temperature gradigrit4] revealed that
the addition of a parameter gradient can lead to reorientation
of the axis of the ring, change the rate at which it shrinks
(and in some cases even reverse the shrinkiagd may in
addition alter the circular shape of the ring. It is the goal of
the present paper to account for these effects with a quanti-
tative, predictive theory. >
We do this by considering the extension of the theory of

FIG. 1. Schematic of a scroll ring. The ring is shown in cross
section. The filament about which the wave rotates is shown as a
*Author to whom correspondence should be addressed. Presem¢avy black curve. The unit vectdris tangent to the filament. The
address: Department of Physics, American University of Sharjahbinormal unit vectorB lies along the axis of symmetry of the ring,
P.O. Box 26666, Sharjah, U.A.E. Electronic address:and is inclined by an anglé (rotated about thg axis) with respect
mjv@cutter.ship.edu to the z direction.

1063-651X/99/568)/27648)/$15.00 PRE 59 2764 ©1999 The American Physical Society



PRE 59 DYNAMICS OF SCROLL RINGS IN A PARAMETER GRADIENT 2765

tive theory for the motion of a scroll ring in a medium with

a gradient. We also obtain analytic estimates of the range of
applicability of the theory, based on the influence of nonlocal
self-interactions of the scroll ring filament. We test the pre-
dictions of the theory numerically using the FitzHugh-
Nagumo equationg23,24,10Q.

II. EQUATIONS OF MOTION IN A PARAMETER
GRADIENT

In this section we extend the equations of local filament g1 2. schematic diagram of the velocities induced on a scroll

dynamics to include the influence of a parameter gradienting py (g) local filament dynamics, antb) the gradientN and B
We focus here only on the equations that describe the evQge, respectively, the normal and binormal velocities. The two com-
lution of the shape of the vortex ring filament, without at- ponents of the gradient-induced drift velocity e andG, . The
tempting to model the development of twist. The theory ofgradient is depicted as the vectpr
local filament dynamic§18—21], derived under the assump-
tion of a homogeneous medium, gives approximate equa- So far our discussion has been quite general. We now
tions for the velocitydR(p)/dt of each pointp of the fila-  specialize to the case of a planar, circular scroll ring. Figure
ment in terms of the local curvature and (in principle) 2 shows schematically the lateral projection of such a ring,
torsionTand twist ratew. In an inhomogeneous medium, we with the filament depicted as a black line, along with the
assume that weak, smooth inhomogeneities may be agectorsN andB (left pane), andG, and G, (right pane).
counted for by adding the gradient-induced drift velocity to The normal velocityN is oriented inward, causing the ring to
the local filament equatiorid2—14. Using only the leading-  shrink. The binormal velocit causes translation of the ring
order filament dynamics equations given [i21,20, we  along its axis of symmetry. The gradient-induced velocities
therefore postulate that also affect the motion of the ring. The parallel compor@nt
translates the ring in the direction of the gradiénertical
dR(p) direction in Fig. 2. The perpendicular componeBt always
dt points in opposite directions at opposite points in the scroll
ring (due to the chirality dependence of the perpendicular
~ . component of the drift velocily causing a net “torque”
whereN, is the local linlt vector normal to the curve of the (whepn 0+0, ) that tends to ret?)/rient th(g plane of thg fing.
filament at locatiorp, By, is the local binormal unit vector, We now apply Egs(1) and(2) to a scroll ring. We there-
Gy, is the gradient-induced velocity pfanda andu (called,  fore consider a ring of radius inclined by an angle with
respectivelyp, andcs in [20,21)) are constants that depend respect to the direction of the gradieftaken to be thez

on the parameters of the medium. For a scroll ri.mgsome- direction, with center aa,=(x,0,z), parametrized as
times refered to as the filament tensid]) describes the

=aK(p)Np+,uK(p)ép+Gp, (1)

shrinking of the ring, angw describes its motion along its R(p)=a,+r(p)
axis of symmetry(binormal driff. (Note that u=0 for L R .
equal-diffusion systems such as the BZ mo®8,26)). In =XX+2zZ+r1 cospy—r(cosok+sino2)sinp. (3)

writing Eqg. (1), we make use of the fact that to leading order, . .
the motion of the filament is independent of its twist and/€T€P parametrizes the curve and runs from 0 #q &tarting

torsion[21]. The presence of the gradient will certainly lead & the point(x,r,2). In writing this parametrization, we as-
to twist, but provided it remains sufficiently small, Eq.) sume.that wher_1 a grad_lent is added, the ring remains planar
should still hold. and circular(as it does in a homogeneous medjumppen-

The termG, in Eq. (1) accounts for the effect of the dix C addresses the question of whether the solutions we
gradient on thpe Iocal.filament velocity. Numeridg@2,17] obtain from this parametrization are stable solutions of the
and experimental13,14 observations of drifting spiral full equations of motion, Eq(_l). . . .
waves indicate that for a gradient oriented in thdirection, By applying this parametrization to the right-hand side of

; ; ; ; Eq. (1), and using the fact that for a circular ringijs just 1f
the resulting drift velocity may be written
g y may everywhere, we obtaifsee Appendix A for detaijs

G=B(g)Tx2+y(9)2 dR(p) & _ a o
———=— —cospy+ —sinp(cosHX+sin 2)
=G, +G, ¥) dt r r
L . . ) Mo o 5
whereT is a unit vector tangential to the filament, a@g) - ?(sm 6% —c0s62)
and y(g) are functions of the gradient strengghand de-
scribe, respectively, the components of the drift velocity per- — B(g)(sinpX+cosé cospy)+v(g)z. (4)

pendicular to and parallel to the gradient direction. We em-

phasize that these functions may be determined frmm  Using Eqg.(3) to evaluate the left-hand side of E@l) and
dimensional observations (see final paragraph of this equating components, we are left with equations rf¢t),
sectior). o(t), x(t), andz(t):
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dr/dt=—$+,8(g)cos¢9, L o o o e o ‘
do/dt=— @sine,

5
dx/dt=—"siné,

6 (degrees)

dz/dt= %COSG'F v(9).

The first of Eqs(5) describes the combined effect of the
local-dynamics normal velocitithe — a/r term) and the per-
pendicular component of the drift velocit( ). The second
of Egs. (5) describes the “torque” on the ring due 1B, .
The third and fourth equations describe the translation of the
ring due to the binormal velocitythe x term9 and G, .
These last two equations do not affect the ring’s radius, ori-
entation, or shape.

Analysis of Egs.(5) leads to the following conclusions. FIG. 3. Phase plane (6) of Egs.(5). r is shown in space units
First, the gradient-induced drift affects the contraction of the(s.u). Here a=0.24 andg=0.015. The arrows are all normalized
ring, and may even reverse it. As can be seen from the firgb the same length. The solid lines are four representative solutions,
of Egs.(5), When| 0|>71-/2, the gradient-induced drift accel- and the gray band shows the radius below which the ring disap-
erates the shrinking of the ringve choose the axis such  pears. The dashed line is the stable manifold of the fixed point
that B is positive. For other angles, the drift opposes the (black dot at (r,6)=(a/B,0); this manifold separates solutions
Shrinking. When the gradient is Sufﬁcient'y Strong and thethat will shrink from solutions that will grow Indeflnltely
ring sufficiently large, theB(g)cosé term dominates the
— alr term, and causes the ring to expand. Second, as can ljatiated a scroll ring, and applied the gradient after one full
seen from the equation faté/dt, the gradient produces a turn of the scroll(definingt=0 as the moment the gradient
“torque,” which reduced 6| toward zero. Third, the drift of was appliedd We determined the filament by Fourier
the ring in the presence of a gradient is no longer along itsmoothing of the corésee Appendix B The simulations
axis of symmetry, but in addition it acquires a component inshow that the modified local theory gives quantitatively ac-
the direction of the gradient. The tendency toward expansiogurate results when the initial angle is small, for a broad
and rotation is reminiscent of a current loop in an externarange of gradient strength and initial radisee below. Fig-
magnetic field. ure 4 shows a comparison of E¢S) with results from such

Figure 3 shows the solutions of the first two equations ag simulation, for a case in which the initial angl&,, was
depicted in ¢,6) phase space. The equations have a hyper9.8°. The three panels show the time dependence &fand
bolic fixed point at ¢,6)=(a/3,0). The unstable manifold 2z for simulations with positive, zero, and negative gradients.
of this fixed point is the9=0 axis, and the stable manifold, As can be seen from Fig.(@, the positive gradientfilled
which forms a separatrix between rings which will shrink to triangleg slows down the contraction of the ring relative to
zero radius and rings which will grow indefinitely, is de- the zero-gradient cageircles and dashed lineThe negative
picted as a dashed curve in Fig. 3. It should be noted that ogradient(open triangles accelerates the contraction. In all
equations predict growth of a scroll ring even though thethree cases, good agreement between thebngs) and
filament tensiori21,27] is positive, when the gradient is suf- Simulation (symbol$ can be seen. The evolution of tize
ficiently strong. This gradient-induced growth of a scroll ring Position of the ring and the angtealso agree with the modi-
has been observed experimentally in the BZ reaction, ified local theory[Figs. 4b) and 4c)].
which rings normally collapsgl4].

N N\

A N A

_ To t.est our theory qugntitgtively, we usc_ad n.umerical IIl. NONLOCAL EFFECTS
simulations of a reaction-diffusion equation with FitzHugh-
Nagumo kineticg§see Appendix B To obtain numerical val- When the initial angle of the ring is increased, there ap-

ues of the parameters of Eq®), we did the following:«  pear increasing deviations between the predictions of the lo-
and u were determined by measuring, respectively, thecal theory and the numerical and experimeftd] observa-
shrink rate and binormal drift velocity of scroll rings in a tions. Figure 5 shows an example of the quantitative
homogeneoumedium; 8 andy were determined by measur- deviations from the local theory, for a scroll ring with an
ing the components of the drift velocity of spiral waves in ainitial angle of §,=46°. The simulations agree with the
two-dimensionaimedium with a gradient. The solutions of theory for some time, but then, after a certain delay, charac-
Egs. (5), which now have no adjustable parameters, werderized byT,,, (see beloy, they begin to deviate.

then compared to the results of the three-dimensional simu- In[28], Winfree listed a variety of conditions under which
lations in a medium with a gradient. In the simulations, wethe local theory may fail. In the case under consideration
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FIG. 5. Comparison of local theory and simulation for initial
0=46°. The gradient here was 0.0045. All other parameters were
FIG. 4. Comparison of local theorfines) and simulation(tri-  the same as Fig. 4. The vertical line shows the approximate unwind-
angles and circlgsfor initial §=9.8°, with three different gradi- ing time T, after which nonlocal effects render the local theory
ents.r is in space unitgs.u); time is in time units(t.u.). (a) The unreliable.
radius of the ring as a function of timé) The vertical(z) position
of the center of the ring.c) The angled of the ring with respect to

the z axis. The simulations were carried out using the modifiedhere’ we are able to identify the precise mechanism by which

FitzHugh-Nagumo equationsee Appendix B for numerical de- the parameter grad_lent _Causei de\_/iat_ion” from the _Iocal
tails) on a computational grid of size 8®BO0x80, with h, theory. The mech_anlsm 1S the u_nWlndlng effect, ‘_Nh'Ch

=0.75s.u. anch,=0.04t.u. The gradient was implemented as aleads to nonlocal interactions of distant parts of the filament
gradient in the parametes,, varying from 0.75 to 1.02. The theo- [15]. F_|gure 6 |IIustrates this effect by showing the sproll_

retical curves were computed using=0.24, 8=+0.0056, y=  Wave in cross section through the center. The gradient is
+0.01, andx=0.43. These values fax and u were determined Oriented so that the lower part of the ring rotates faster. The
from the zero-gradient simulation, and the valuesgaind y were ~ Upper panels show a rotation just after the moment the gra-

estimated from the drift of a two-dimensional spiral in an identical dient is applied {=0). The lower panels show one rotation
gradient. cycle of the same ring, after the unwinding has developed
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FIG. 6. Cross sections of a scroll ring, showing the unwinding
effect. The number for each panel shows the time of the snapshot in
t.u. t=0 was the moment when the gradient was turned on. The
upper row shows the rotation before the unwinding, the lower panel
shows the rotation just beforg,,. These calculations were done
with the same parameters as Fig. 5.
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ocal Theory Does Not Apply

(t=125 through 140 At t=0, the waves are symmetrical,
and the wave fronts collide along the ring’s axis of symmetry

far from the filamentsee the panel a&=5), and therefore do Local Theory Applies

not affect the motion of the filament. At later times, however,

the symmetry is broken: the lower part has accumulated 0 \ ! .
turns of the spiral around it at the expense of the upper part 0 50 100 150

(unwinding, causing the collision point to migrate closer to
the upper part of the ring. Now the wave front collides very
close to the upper part of the filament itself, directly affecting

its motion (the first such collision occurs at thg,,, the functi ¢ initial o f | diff initial radii. Th
. ding timé This additional filament motion is purely unctions o |n|t|§1 ang e_, or several different initia ra. ii. These
unwin ) curves were derived using the same parameters as Figs. 4—6. The

npnlocal, as itis ca_used by a wave front originating from aTuvv curves were computed using E6); the values ofr, and, for
distant part of the ring. o each angle were computed using a polynomial fit to the spiral wave
The unwinding of the slowefuppe) part of the ring fila-  period as a function ot,, as determined from two-dimensional
ment is due to the differential rotation periods caused by theyns, Ther,,, curves were obtained by numerically integrating Egs.
gradient. The unwinding time may be estimated from thes) ysing a fourth-order Runge-Kutta algorithm, until the radius
rotation periods at the fastest and slowest parts of the ring Vigeached zerob) Parameter plane of initial radius and angle, show-

(b) 6, (degrees)

FIG. 7. (@ Unwinding time (solid) and lifetime (dashed, as

the following equatiorf29,15: ing the region for which the local theory may be expected to work.
The open circles correspond to the open circle@inand the dark
- 2r ©) circles show the initial conditions for Figs. 4 and 5.

uw_u(l_Tl/Tz) '
Tuw™ Tiite - (7)

Here 7, is the period of the fastest part of the filameny,is
the period of the slowest paigo thatr; <), r is the radius  The lifetime may be calculated by integrating E¢s). until
of the ring, andu is the linear speed of the wave fronts. The the radius reaches zero. It should be noted that when the
periodst; and 7, can be obtained by computing the rotation gradient is strong enough that the ring exparklsg, is infi-
period of two-dimensional spirals at the local parameter valhite, and a conservative estimate predicts that the theory
ues corresponding to the location of the upper and loweshould fail for nonzero angles.
parts of the ring. The tim& ,,, calculated from this equation Figure {a showsT,, (solid lineg and T (dashed lines
agrees with the observations of the time when the simulaas functions of the initial angle for several different initial
tions begin to deviate significantly from the thedsee Fig. radii, using parameters obtained from the FitzHugh-Nagumo
5). simulations of Figs. 4—6T,, is large for angles close to 0

If the ring shrinks and disappears before it has a chance tand 180°(because in such cases the rotation perindand
unwind, then the local theory should hold, even for larger, are nearly equal and decays rapidly as the angle ap-
angles. The applicability of the local theory therefore shouldproaches 90°. Thé& ;. curves depend weakly on angle and
depend on the relative size of two time scales: the unwindingtrongly on initial radius. The intersections of these families
time, given by Eq.(6), and the lifetime of the ringTe , of curves give the limits of the applicability of the local
which may be obtained from Eq¢5). That is, the theory theory, leading to Fig. (b). As can be seen, for angles close
applies whenever to 0 and 180° the theory applies for a wide range of initial
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radius. The two cases shown in Fig.(#here the theory circular ring of Eq.(3), wheres denotes arclength
applies and Fig. 5(where it does notare indicated in Fig. 7

as filled circles. As expected, the point that falls above the Fo dR/dp

curve in Fig. Tb) corresponds to a simulation in which the ds/dp

theory did not hold, and the point that falls below it corre- o R

sponds to a simulation where the theory did hold. = —sinpy— (cos#X+ sin §z)cosp, (A1)

Figure 1b) was computed for a single value of the gradi- . o B
ent. A stronger gradient will decrease the unwinding time,t.he unit normal vector igusing the fact thak =1/ for the

leading to a smaller region of applicability of the local fing)
theory. To gauge the strength of the gradient in a model- 1 d’R  d3s
independent fashion, the nondimensional strength of the gra- N= K(po)z d_pz_ d—p2:r

dient, as measured by its effect on the time scales of the
system, may be taken to ReT/T, whereAT is the differ- — —cospy+ (cos#R+ sin #2)sinp, (A2)
ence in spiral wave periods over the diameter of the ring

[approximatelyAT=(dT/dz)(2r), wheredT/dzis the gra- and the unit binormal vector is

dient in rotation period, evaluated at the center of the]ring

andT, is the spiral wave period at the center of the ring. For B=TxN

the simulations of Fig. 4AT was approximately 12 time
units (t.u.), and T was 27 t.u., for a dimensionless value of
AT/T¢=0.44. This shows that the modified local theory may
work even though thénondimensionalgradient is not very

= —sin X+ cosHZ. (A3)

Note that the binormal vector is independenppfhat is, it is
the same for all parts of the ring. Using Eg), we find for

small. . . .

In addition to the nonlocal effects described here, theré[he two components of the gradient-induced velocity
may be other mechanisms of deviation between the modified G, = B(g)(—sinpX+cosd cospy),
local theory and the simulations. For example, due to the (Ad)
differential rotation periods, twist must develop along the G,=y(9)z

ring filament, and this may affect the dynamiedthough to

motion of the filamen{20,21)). For larger twist rates, the of G, Eq. (1) immediately gives us the right-hand side of Eq.
effect on the filament dynamics can be significg3@,13. (4). We now differentiate Eq(3) with respect to time, ob-
tainin
IV. CONCLUSION 9

In this paper, we propose equations of motion for scroll &ZXXH cospy— i (CosOX+ sin 62)sinp

ring filaments in a parameter gradient. These equations pre- dt
dict reorientation of the plane of the ring, acceleration or
deceleration of its collaps@r expansiof and an additional

component of its drift, so that it no longer drifts along its axisWhere we use the dots to denote time derivatives. We equate
of symmetry. The equations work well unless nonlocal ef- . . ) q

; ) . Eq. (A5) to the right-hand side of Ed4), equatex, y, andz
fects due to self-interaction of widely separated parts of th%om onents, and Eqt5) immediately follow
ring rotating at different rates become important. We give P ' q y '
explicit conditions under which this occurs.

Although in this paper we tested the modified local theory APPENDIX B: NUMERICAL MODEL

using only the FitzHugh-Nagumo model, we expect the re-  Tne results of this paper were tested computationally us-

sults reported here to hold for other models of excitable meyng the modified FitzHugh-Nagumo mode3,24,31,10
dia as well. Moreover, we believe a similar extension of the

local theory to include the effect of the gradient may also )
work for other scroll wave configurations, with similar limi- i f(E)—g+DV-“E,
tations imposed by nonlocal effects.

—r(— 6sin 6%+ 6 cosé2)sinp, (A5)

(B1)
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APPENDIX A: DERIVATION OF EQS. (5) —c.E for E<E;
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vector at pointp is [using the fact thads/dp=r for the —C3(E-1) for E>E,
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and 7(E) is piecewise constant: — — T — —
m, for E<B;
7(E)=4 7, for B;<E=B, (B3)

T3 for E>BZ

The parameter values for the functions defined above used ir
this paper are as follows:; =4.0,c;=15.0,E;=0.018, 7,
=73=0.5, 7,=16.66,B,=0.01,B,=0.95. The parameters FIG. 8. Filament images, showing stability of the planar, circu-
E, and a are determined by demanding continuity of the lar ring. These figures were obtained by integrating the full differ-
function f(E): E,=[(c,+C,)Eq+c3]/(c3+cCy), a=E;(cq ential geometry equationd) by discretizing the filament with 256
+c,)/c,. The gradient was implemented as a linear variapoints and numerically integratingR/dt. The initial conditions
tion in the parametetr, (generally varying between 0.75 and were a ring with both normal and binormal perturbations. tAt
1.02. =20, the perturbations have noticeably shrunk, and$90, the
To solve Egs(B1), an explicit Euler scheme was carried filament has almost returned to its planar, circular shape.
out on a regular lattice with space step=0.75 s.u. and time _ ) )
steph,=0.04t.u. These were chosen so that a further dethe S(_)Iut|ons of t_hese equations s_table s_olutlon_s of the_ full
crease produced no significant change in the final results. €duations of motion Ec(1)? In particular, if the ring devi-
The core of the scroll ring was determined by tracking thedt€s slightly from its planar, circular shape, do_ the perturba-
maximum value ofE over one rotation period, and defining tions grow or shrink? To answer these questions, we have
the core to consist of those points whose maximum value i§ompared solutions of Eq¢5) with numerical solutions of
below a certain threshold valigenerally chosen to be half- EQ. (1). Figure 8 shows an example in which the filament is
way between the maximum and minimum values Bf 9iven a perturbation that significantly distorts it from its pla-
throughout the lattice This procedure produces a “cloud” Nar, cwcglar shape..As can t_)e seen, thg perturbations die out
of core points. The filament was then determined in the fol-very rapidly, returning the filament to its planar shape. In
lowing way. The center of mass of the “cloud” of core addition, using the numerical scheme with a smaller pertur-
points was computed and taken to be the center of the ringation, we find that the filament converges to the solutions of
Then the plane that best fit the cloud was determined byrds:(5) (not shown. _
computing the mean-square deviation between the cloud of The stability question may also be addressed analytically.
points and a plane of given angle; the anglhat gave least For example, consider binormal perturbations to the flat ring,
mean-square deviation was taken to be the plane of the ringP thatR(p) becomes
(and the magnitude of the deviation was then a measure of ) .
how planar the ring actually wasOnce the plane was deter- R(p)=Ro(p) +esinnpB, (CD
Vrr\;iltr;]etdh, eacé:?]/ltlenrd cr)l]? ﬁ: acsc;O;(ilTﬁ;eo‘:’ési:;r;’\;\;?STLn;%ﬁZﬁ?er?tn ItWheretn is tr)et(integelb frequency of the perturbatiom,is its
was computed a(¢) and z(¢), determined by least- magnltudeB is 'the'blnormal unit vector to tf@nperturbe&j
squares fitting Fourier series to those functions. ring, andRy(p) is given by Eq(3). Then inserting this equa-
As for initial conditions, scroll rings were produced by tion into Eq.(1), to linear order ine we find
initiating a spherical wave in the center of the meditmy d 2
stimulating at a point and then killing off half the medium, qe__ ﬂe (C2)
above a plane inclined by angtewith respect to the di- dt re
rection, when the sphere reached a specified size. This pro- 1 , i i
cedure produced a circular wave break that subsequently beincee “de/dtis negative for alh, the perturbations decay
came a scroll ring inclined by. In all cases, one rotation O Z€ro.(The parameter is positive for most systems of

period was allowed to pass before the gradient was switchegXPerimental relevance. When it is negai2é,27, or when
on. the gradient is sufficiently strong, the ring tends to grow and

perturbations do not decayAlthough € goes to zero, the
ring itself may shrink as well, and for shape stability we
actually needk/r to go to zero. Analysis of EqC2) shows

Here we address the stability of Eq$) as solutions to that this condition holds for ath>1. For the case=1, the
the full differential geometry equationd). Equations(5)  binormal perturbation is equivalent to a rotation of the ring,
describe a ring which remains planar and circular. But arend can be absorbed by a redefinitionéof

t=0 t=20 t=90
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