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Dynamics of scroll rings in a parameter gradient
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~Received 12 August 1998!

Experimental observations of scroll rings in excitable media have shown that an externally applied param-
eter gradient can significantly alter the dynamics of the ring, leading to rotation of the plane of the ring,
variations in its rate of collapse, and distortions in its shape. Here we propose a theory to account for these
effects by extending the theory of local filament dynamics to include the influence of the parameter gradient.
Numerical simulations using the FitzHugh-Nagumo equations show that the proposed theory works well when
the differences in rotation periods at different parts of the filament are sufficiently small. When this condition
does not hold, the theory must be modified to take into account nonlocal interactions.
@S1063-651X~99!10403-3#
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I. INTRODUCTION

Excitable media describe systems ranging from the b
logical to the chemical@1–5#. These systems often exhib
periodic excitations in the form of spiral waves. In thr
dimensions these waves are called scroll waves, and
rotate about a one-dimensional singularity, the filament.
the simplest case the filament is a straight line, but it m
also be curved; when it forms a circle, the resulting wa
pattern is known as a scroll ring. See Fig. 1. Most studie
date have concentrated on the dynamics of these wave
homogeneous media. In natural systems, however, suc
the Belousov-Zhabotinsky~BZ! chemical reaction and car
diac tissue, the waves usually propagate in the presenc
inhomogeneities@6,7,1,8–10#. In this paper, we concentrat
on the behavior of scroll rings in the presence of a lar
scale inhomogeneity. The simplest model of such an in
mogeneity is a smooth parameter gradient, which can
matically affect the dynamics of scroll waves@11,9,7,12–
15#.

A scroll ring in a homogeneous excitable medium gen
ally shrinks until it self-annihilates, and it may also dr
along its axis of symmetry; however, its axis of symme
remains fixed in space and the ring itself remains circu
@16,17#. Recent experimental observations of scroll rings i
BZ reaction with a temperature gradient@14# revealed that
the addition of a parameter gradient can lead to reorienta
of the axis of the ring, change the rate at which it shrin
~and in some cases even reverse the shrinking!, and may in
addition alter the circular shape of the ring. It is the goal
the present paper to account for these effects with a qua
tative, predictive theory.

We do this by considering the extension of the theory
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local filament dynamics@18–21# to include an inhomoge-
neous medium with a smooth parameter gradient. In t
dimensions, such a gradient induces a drift velocity of
center of rotation@9,22,12#. In three dimensions a simila
drift occurs, though it may have more complicated effects
the filament motion@12,10,13#. Earlier investigations@12–
14# have shown that gradient-induced drift can be combin
with the local theory to give qualitative agreement wi
simulations@12# and experiment@13,14#. In the present pa-
per, we further develop this approach, obtaining a quant

ent
h,
:

FIG. 1. Schematic of a scroll ring. The ring is shown in cro
section. The filament about which the wave rotates is shown a

heavy black curve. The unit vectorT̂ is tangent to the filament. The

binormal unit vectorB̂ lies along the axis of symmetry of the ring
and is inclined by an angleu ~rotated about they axis! with respect
to thez direction.
2764 ©1999 The American Physical Society
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PRE 59 2765DYNAMICS OF SCROLL RINGS IN A PARAMETER GRADIENT
tive theory for the motion of a scroll ring in a medium wit
a gradient. We also obtain analytic estimates of the rang
applicability of the theory, based on the influence of nonlo
self-interactions of the scroll ring filament. We test the p
dictions of the theory numerically using the FitzHug
Nagumo equations@23,24,10#.

II. EQUATIONS OF MOTION IN A PARAMETER
GRADIENT

In this section we extend the equations of local filam
dynamics to include the influence of a parameter gradi
We focus here only on the equations that describe the e
lution of the shape of the vortex ring filament, without a
tempting to model the development of twist. The theory
local filament dynamics@18–21#, derived under the assump
tion of a homogeneous medium, gives approximate eq
tions for the velocitydR(p)/dt of each pointp of the fila-
ment in terms of the local curvaturek and ~in principle!
torsiont and twist ratew. In an inhomogeneous medium, w
assume that weak, smooth inhomogeneities may be
counted for by adding the gradient-induced drift velocity
the local filament equations@12–14#. Using only the leading-
order filament dynamics equations given in@21,20#, we
therefore postulate that

dR~p!

dt
5ak~p!N̂p1mk~p!B̂p1Gp , ~1!

whereN̂p is the local unit vector normal to the curve of th
filament at locationp, B̂p is the local binormal unit vector
Gp is the gradient-induced velocity atp, anda andm ~called,
respectively,b2 andc3 in @20,21#! are constants that depen
on the parameters of the medium. For a scroll ring,a ~some-
times refered to as the filament tension@21#! describes the
shrinking of the ring, andm describes its motion along it
axis of symmetry~binormal drift!. ~Note that m50 for
equal-diffusion systems such as the BZ model@25,26#!. In
writing Eq. ~1!, we make use of the fact that to leading ord
the motion of the filament is independent of its twist a
torsion@21#. The presence of the gradient will certainly lea
to twist, but provided it remains sufficiently small, Eq.~1!
should still hold.

The term Gp in Eq. ~1! accounts for the effect of the
gradient on the local filament velocity. Numerical@22,12#
and experimental@13,14# observations of drifting spira
waves indicate that for a gradient oriented in theẑ direction,
the resulting drift velocity may be written

G5b~g!T̂3 ẑ1g~g!ẑ

[G'1Gi , ~2!

whereT̂ is a unit vector tangential to the filament, andb(g)
and g(g) are functions of the gradient strengthg and de-
scribe, respectively, the components of the drift velocity p
pendicular to and parallel to the gradient direction. We e
phasize that these functions may be determined fromtwo-
dimensional observations ~see final paragraph of thi
section!.
of
l
-

t
t.
o-

f

a-

c-

,

-
-

So far our discussion has been quite general. We n
specialize to the case of a planar, circular scroll ring. Fig
2 shows schematically the lateral projection of such a ri
with the filament depicted as a black line, along with t
vectorsN and B ~left panel!, andG' and Gi ~right panel!.
The normal velocityN is oriented inward, causing the ring t
shrink. The binormal velocityB causes translation of the rin
along its axis of symmetry. The gradient-induced velocit
also affect the motion of the ring. The parallel componentGi

translates the ring in the direction of the gradient~vertical
direction in Fig. 2!. The perpendicular componentG' always
points in opposite directions at opposite points in the sc
ring ~due to the chirality dependence of the perpendicu
component of the drift velocity!, causing a net ‘‘torque’’
~whenuÞ0, p! that tends to reorient the plane of the ring

We now apply Eqs.~1! and~2! to a scroll ring. We there-
fore consider a ring of radiusr, inclined by an angleu with
respect to the direction of the gradient~taken to be thez
direction!, with center atac5(x,0,z), parametrized as

R~p!5ac1r ~p!

5xx̂1zẑ1r cospŷ2r ~cosu x̂1sinu ẑ!sinp. ~3!

Herep parametrizes the curve and runs from 0 to 2p, starting
at the point~x,r,z!. In writing this parametrization, we as
sume that when a gradient is added, the ring remains pla
and circular~as it does in a homogeneous medium!. Appen-
dix C addresses the question of whether the solutions
obtain from this parametrization are stable solutions of
full equations of motion, Eq.~1!.

By applying this parametrization to the right-hand side
Eq. ~1!, and using the fact that for a circular ring,k is just 1/r
everywhere, we obtain~see Appendix A for details!

dR~p!

dt
52

a

r
cospŷ1

a

r
sinp~cosu x̂1sinu ẑ!

2
m

r
~sinu x̂2cosu ẑ!

2b~g!~sinpx̂1cosu cospŷ!1g~g!ẑ. ~4!

Using Eq.~3! to evaluate the left-hand side of Eq.~4! and
equating components, we are left with equations forr (t),
u(t), x(t), andz(t):

FIG. 2. Schematic diagram of the velocities induced on a sc
ring by ~a! local filament dynamics, and~b! the gradient.N andB
are, respectively, the normal and binormal velocities. The two co
ponents of the gradient-induced drift velocity areG' andGi . The
gradient is depicted as the vectorg.
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2766 PRE 59MICHAEL VINSON AND ARKADY PERTSOV
dr/dt52
a

r
1b~g!cosu,

du/dt52
b~g!

r
sinu,

~5!

dx/dt52
m

r
sinu,

dz/dt5
m

r
cosu1g~g!.

The first of Eqs.~5! describes the combined effect of th
local-dynamics normal velocity~the2a/r term! and the per-
pendicular component of the drift velocity (G'). The second
of Eqs. ~5! describes the ‘‘torque’’ on the ring due toG' .
The third and fourth equations describe the translation of
ring due to the binormal velocity~the m terms! and Gi .
These last two equations do not affect the ring’s radius,
entation, or shape.

Analysis of Eqs.~5! leads to the following conclusions
First, the gradient-induced drift affects the contraction of
ring, and may even reverse it. As can be seen from the
of Eqs.~5!, whenuuu.p/2, the gradient-induced drift acce
erates the shrinking of the ring~we choose thez axis such
that b is positive!. For other angles, the drift opposes t
shrinking. When the gradient is sufficiently strong and t
ring sufficiently large, theb(g)cosu term dominates the
2a/r term, and causes the ring to expand. Second, as ca
seen from the equation fordu/dt, the gradient produces
‘‘torque,’’ which reducesuuu toward zero. Third, the drift of
the ring in the presence of a gradient is no longer along
axis of symmetry, but in addition it acquires a componen
the direction of the gradient. The tendency toward expans
and rotation is reminiscent of a current loop in an exter
magnetic field.

Figure 3 shows the solutions of the first two equations
depicted in (r ,u) phase space. The equations have a hyp
bolic fixed point at (r ,u)5(a/b,0). The unstable manifold
of this fixed point is theu50 axis, and the stable manifold
which forms a separatrix between rings which will shrink
zero radius and rings which will grow indefinitely, is de
picted as a dashed curve in Fig. 3. It should be noted that
equations predict growth of a scroll ring even though
filament tension@21,27# is positive, when the gradient is su
ficiently strong. This gradient-induced growth of a scroll rin
has been observed experimentally in the BZ reaction
which rings normally collapse@14#.

To test our theory quantitatively, we used numeric
simulations of a reaction-diffusion equation with FitzHug
Nagumo kinetics~see Appendix B!. To obtain numerical val-
ues of the parameters of Eqs.~5!, we did the following:a
and m were determined by measuring, respectively,
shrink rate and binormal drift velocity of scroll rings in
homogeneousmedium;b andg were determined by measu
ing the components of the drift velocity of spiral waves in
two-dimensionalmedium with a gradient. The solutions o
Eqs. ~5!, which now have no adjustable parameters, w
then compared to the results of the three-dimensional si
lations in a medium with a gradient. In the simulations,
e
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initiated a scroll ring, and applied the gradient after one f
turn of the scroll~defining t50 as the moment the gradien
was applied!. We determined the filament by Fourie
smoothing of the core~see Appendix B!. The simulations
show that the modified local theory gives quantitatively a
curate results when the initial angle is small, for a bro
range of gradient strength and initial radius~see below!. Fig-
ure 4 shows a comparison of Eqs.~5! with results from such
a simulation, for a case in which the initial angle,u0 , was
9.8°. The three panels show the time dependence ofr, u, and
z for simulations with positive, zero, and negative gradien
As can be seen from Fig. 4~a!, the positive gradient~filled
triangles! slows down the contraction of the ring relative
the zero-gradient case~circles and dashed line!. The negative
gradient ~open triangles! accelerates the contraction. In a
three cases, good agreement between theory~lines! and
simulation ~symbols! can be seen. The evolution of thez
position of the ring and the angleu also agree with the modi
fied local theory@Figs. 4~b! and 4~c!#.

III. NONLOCAL EFFECTS

When the initial angle of the ring is increased, there a
pear increasing deviations between the predictions of the
cal theory and the numerical and experimental@14# observa-
tions. Figure 5 shows an example of the quantitat
deviations from the local theory, for a scroll ring with a
initial angle of u0546°. The simulations agree with th
theory for some time, but then, after a certain delay, char
terized byTuw ~see below!, they begin to deviate.

In @28#, Winfree listed a variety of conditions under whic
the local theory may fail. In the case under considerat

FIG. 3. Phase plane (r ,u) of Eqs.~5!. r is shown in space units
~s.u.!. Herea50.24 andb50.015. The arrows are all normalize
to the same length. The solid lines are four representative soluti
and the gray band shows the radius below which the ring dis
pears. The dashed line is the stable manifold of the fixed p
~black dot! at (r ,u)5(a/b,0); this manifold separates solution
that will shrink from solutions that will grow indefinitely.
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PRE 59 2767DYNAMICS OF SCROLL RINGS IN A PARAMETER GRADIENT
FIG. 4. Comparison of local theory~lines! and simulation~tri-
angles and circles! for initial u59.8°, with three different gradi-
ents.r is in space units~s.u.!; time is in time units~t.u.!. ~a! The
radius of the ring as a function of time.~b! The vertical~z! position
of the center of the ring.~c! The angleu of the ring with respect to
the z axis. The simulations were carried out using the modifi
FitzHugh-Nagumo equations~see Appendix B for numerical de
tails! on a computational grid of size 80380380, with hx

50.75 s.u. andht50.04 t.u. The gradient was implemented as
gradient in the parameterc2 , varying from 0.75 to 1.02. The theo
retical curves were computed usinga50.24, b560.0056, g5
60.01, andm50.43. These values fora and m were determined
from the zero-gradient simulation, and the values forb andg were
estimated from the drift of a two-dimensional spiral in an identi
gradient.
here, we are able to identify the precise mechanism by wh
the parameter gradient causes deviation from the lo
theory. The mechanism is the ‘‘unwinding’’ effect, whic
leads to nonlocal interactions of distant parts of the filam
@15#. Figure 6 illustrates this effect by showing the scro
wave in cross section through the center. The gradien
oriented so that the lower part of the ring rotates faster. T
upper panels show a rotation just after the moment the
dient is applied (t50). The lower panels show one rotatio
cycle of the same ring, after the unwinding has develop

l

FIG. 5. Comparison of local theory and simulation for initi
u546°. The gradient here was 0.0045. All other parameters w
the same as Fig. 4. The vertical line shows the approximate unw
ing time Tuw , after which nonlocal effects render the local theo
unreliable.
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2768 PRE 59MICHAEL VINSON AND ARKADY PERTSOV
(t5125 through 140!. At t50, the waves are symmetrica
and the wave fronts collide along the ring’s axis of symme
far from the filament~see the panel att55!, and therefore do
not affect the motion of the filament. At later times, howev
the symmetry is broken: the lower part has accumula
turns of the spiral around it at the expense of the upper
~unwinding!, causing the collision point to migrate closer
the upper part of the ring. Now the wave front collides ve
close to the upper part of the filament itself, directly affecti
its motion ~the first such collision occurs at theTuw , the
unwinding time!. This additional filament motion is purel
nonlocal, as it is caused by a wave front originating from
distant part of the ring.

The unwinding of the slower~upper! part of the ring fila-
ment is due to the differential rotation periods caused by
gradient. The unwinding time may be estimated from
rotation periods at the fastest and slowest parts of the ring
the following equation@29,15#:

Tuw5
2r

u~12t1 /t2!
. ~6!

Heret1 is the period of the fastest part of the filament,t2 is
the period of the slowest part~so thatt1,t2!, r is the radius
of the ring, andu is the linear speed of the wave fronts. Th
periodst1 andt2 can be obtained by computing the rotatio
period of two-dimensional spirals at the local parameter v
ues corresponding to the location of the upper and lo
parts of the ring. The timeTuw calculated from this equation
agrees with the observations of the time when the sim
tions begin to deviate significantly from the theory~see Fig.
5!.

If the ring shrinks and disappears before it has a chanc
unwind, then the local theory should hold, even for lar
angles. The applicability of the local theory therefore sho
depend on the relative size of two time scales: the unwind
time, given by Eq.~6!, and the lifetime of the ring,Tlife ,
which may be obtained from Eqs.~5!. That is, the theory
applies whenever

FIG. 6. Cross sections of a scroll ring, showing the unwind
effect. The number for each panel shows the time of the snapsh
t.u. t50 was the moment when the gradient was turned on.
upper row shows the rotation before the unwinding, the lower pa
shows the rotation just beforeTuw . These calculations were don
with the same parameters as Fig. 5.
y
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Tuw.Tlife . ~7!

The lifetime may be calculated by integrating Eqs.~5! until
the radius reaches zero. It should be noted that when
gradient is strong enough that the ring expands,Tlife is infi-
nite, and a conservative estimate predicts that the the
should fail for nonzero angles.

Figure 7~a! showsTuw ~solid lines! andTlife ~dashed lines!
as functions of the initial angle for several different initi
radii, using parameters obtained from the FitzHugh-Nagu
simulations of Figs. 4–6.Tuw is large for angles close to 0
and 180°~because in such cases the rotation periodst1 and
t2 are nearly equal!, and decays rapidly as the angle a
proaches 90°. TheTlife curves depend weakly on angle an
strongly on initial radius. The intersections of these famil
of curves give the limits of the applicability of the loca
theory, leading to Fig. 7~b!. As can be seen, for angles clos
to 0 and 180° the theory applies for a wide range of init

in
e
el

FIG. 7. ~a! Unwinding time ~solid! and lifetime ~dashed!, as
functions of initial angle, for several different initial radii. Thes
curves were derived using the same parameters as Figs. 4–6
Tuw curves were computed using Eq.~6!; the values oft1 andt2 for
each angle were computed using a polynomial fit to the spiral w
period as a function ofc2 , as determined from two-dimensiona
runs. TheTlife curves were obtained by numerically integrating Eq
~5! using a fourth-order Runge-Kutta algorithm, until the radiusr
reached zero.~b! Parameter plane of initial radius and angle, sho
ing the region for which the local theory may be expected to wo
The open circles correspond to the open circles in~a!, and the dark
circles show the initial conditions for Figs. 4 and 5.
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PRE 59 2769DYNAMICS OF SCROLL RINGS IN A PARAMETER GRADIENT
radius. The two cases shown in Fig. 4~where the theory
applies! and Fig. 5~where it does not! are indicated in Fig. 7
as filled circles. As expected, the point that falls above
curve in Fig. 7~b! corresponds to a simulation in which th
theory did not hold, and the point that falls below it corr
sponds to a simulation where the theory did hold.

Figure 7~b! was computed for a single value of the grad
ent. A stronger gradient will decrease the unwinding tim
leading to a smaller region of applicability of the loc
theory. To gauge the strength of the gradient in a mod
independent fashion, the nondimensional strength of the
dient, as measured by its effect on the time scales of
system, may be taken to beDT/Ts , whereDT is the differ-
ence in spiral wave periods over the diameter of the r
@approximately,DT5(dT/dz)(2r ), wheredT/dz is the gra-
dient in rotation period, evaluated at the center of the rin#,
andTs is the spiral wave period at the center of the ring. F
the simulations of Fig. 4,DT was approximately 12 time
units ~t.u.!, andTs was 27 t.u., for a dimensionless value
DT/Ts50.44. This shows that the modified local theory m
work even though the~nondimensional! gradient is not very
small.

In addition to the nonlocal effects described here, th
may be other mechanisms of deviation between the mod
local theory and the simulations. For example, due to
differential rotation periods, twist must develop along t
ring filament, and this may affect the dynamics~although to
lowest order of the local theory, twist does not affect t
motion of the filament@20,21#!. For larger twist rates, the
effect on the filament dynamics can be significant@30,13#.

IV. CONCLUSION

In this paper, we propose equations of motion for scr
ring filaments in a parameter gradient. These equations
dict reorientation of the plane of the ring, acceleration
deceleration of its collapse~or expansion!, and an additional
component of its drift, so that it no longer drifts along its ax
of symmetry. The equations work well unless nonlocal
fects due to self-interaction of widely separated parts of
ring rotating at different rates become important. We g
explicit conditions under which this occurs.

Although in this paper we tested the modified local theo
using only the FitzHugh-Nagumo model, we expect the
sults reported here to hold for other models of excitable m
dia as well. Moreover, we believe a similar extension of
local theory to include the effect of the gradient may a
work for other scroll wave configurations, with similar lim
tations imposed by nonlocal effects.
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APPENDIX A: DERIVATION OF EQS. „5…

For the parametrization given in Eq.~3!, the unit tangent
vector at pointp is @using the fact thatds/dp5r for the
e

,

l-
a-
e

g

r

e
d
e

ll
e-
r

-
e
e

y
-
-

e

p-

circular ring of Eq.~3!, wheres denotes arclength#

T̂5
dR/dp

ds/dp

52sinpŷ2~cosu x̂1sinu ẑ!cosp, ~A1!

the unit normal vector is~using the fact thatk51/r for the
ring!

N̂5
1

k~ds/dp!2 Fd2R

dp22
d2s

dp2 T̂G
52cospŷ1~cosu x̂1sinu ẑ!sinp, ~A2!

and the unit binormal vector is

B̂5T̂3N̂

52sinu x̂1cosu ẑ. ~A3!

Note that the binormal vector is independent ofp; that is, it is
the same for all parts of the ring. Using Eq.~2!, we find for
the two components of the gradient-induced velocity

G'5b~g!~2sinpx̂1cosu cospŷ!,
~A4!

Gi5g~g!ẑ.

Using these expressions forT̂, N̂, and the two component
of G, Eq. ~1! immediately gives us the right-hand side of E
~4!. We now differentiate Eq.~3! with respect to time, ob-
taining

dRp

dt
5 ẋx̂1 ṙ cospŷ2 ṙ ~cosu x̂1sinu ẑ!sinp

2r ~2 u̇ sinu x̂1 u̇ cosu ẑ!sinp, ~A5!

where we use the dots to denote time derivatives. We eq
Eq. ~A5! to the right-hand side of Eq.~4!, equatex, y, andz
components, and Eqs.~5! immediately follow.

APPENDIX B: NUMERICAL MODEL

The results of this paper were tested computationally
ing the modified FitzHugh-Nagumo model@23,24,31,10#:

]E

]t
5 f ~E!2g1D¹2E,

~B1!
]g

]t
5~E2g!/t~E!.

Here E is the excitation of the medium;g is the recovery.
Time is measured in time units and space in space u
~s.u.!.

The function f (E) is chosen to be a piecewise linea
‘‘ N’’-shaped function:

f ~E!5H 2c1E for E,E1

c2~E2a! for E1<E<E2

2c3~E21! for E.E2

~B2!



d

s
he

ia
d

d

de
s.
th
g
e
-

’’
fo
e
in
b

d

ri
e
r-

i

-

y

,

p
b

h

ar

full

ba-
ave

is
a-

out
In

tur-
of

lly.
ng,

-

y
f

nd

e

g,

u-
er-

t

2770 PRE 59MICHAEL VINSON AND ARKADY PERTSOV
andt(E) is piecewise constant:

t~E!5H t1 for E,B1

t2 for B1<E<B2

t3 for E.B2 .
~B3!

The parameter values for the functions defined above use
this paper are as follows:c154.0, c3515.0, E150.018,t1
5t350.5, t2516.66,B150.01, B250.95. The parameter
E2 and a are determined by demanding continuity of t
function f (E): E25@(c11c2)E11c3#/(c31c2), a5E1(c1
1c2)/c2 . The gradient was implemented as a linear var
tion in the parameterc2 ~generally varying between 0.75 an
1.02!.

To solve Eqs.~B1!, an explicit Euler scheme was carrie
out on a regular lattice with space stephx50.75 s.u. and time
step ht50.04 t.u. These were chosen so that a further
crease produced no significant change in the final result

The core of the scroll ring was determined by tracking
maximum value ofE over one rotation period, and definin
the core to consist of those points whose maximum valu
below a certain threshold value~generally chosen to be half
way between the maximum and minimum values ofE
throughout the lattice!. This procedure produces a ‘‘cloud
of core points. The filament was then determined in the
lowing way. The center of mass of the ‘‘cloud’’ of cor
points was computed and taken to be the center of the r
Then the plane that best fit the cloud was determined
computing the mean-square deviation between the clou
points and a plane of given angle; the angleu that gave least
mean-square deviation was taken to be the plane of the
~and the magnitude of the deviation was then a measur
how planar the ring actually was!. Once the plane was dete
mined, a cylindrical coordinate system was imposed on
with the center of mass as the origin: (r,f,z). The filament
was computed asr~f! and z(f), determined by least
squares fitting Fourier series to those functions.

As for initial conditions, scroll rings were produced b
initiating a spherical wave in the center of the medium~by
stimulating at a point!, and then killing off half the medium
above a plane inclined by angleu with respect to thez di-
rection, when the sphere reached a specified size. This
cedure produced a circular wave break that subsequently
came a scroll ring inclined byu. In all cases, one rotation
period was allowed to pass before the gradient was switc
on.

APPENDIX C: STABILITY

Here we address the stability of Eqs.~5! as solutions to
the full differential geometry equations~1!. Equations~5!
describe a ring which remains planar and circular. But
er
in
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-

e
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l-
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y
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ng
of

t,

ro-
e-

ed

e

the solutions of these equations stable solutions of the
equations of motion Eq.~1!? In particular, if the ring devi-
ates slightly from its planar, circular shape, do the pertur
tions grow or shrink? To answer these questions, we h
compared solutions of Eqs.~5! with numerical solutions of
Eq. ~1!. Figure 8 shows an example in which the filament
given a perturbation that significantly distorts it from its pl
nar, circular shape. As can be seen, the perturbations die
very rapidly, returning the filament to its planar shape.
addition, using the numerical scheme with a smaller per
bation, we find that the filament converges to the solutions
Eqs.~5! ~not shown!.

The stability question may also be addressed analytica
For example, consider binormal perturbations to the flat ri
so thatR(p) becomes

R~p!5R0~p!1e sinnpB̂, ~C1!

wheren is the~integer! frequency of the perturbation,e is its
magnitude,B̂ is the binormal unit vector to the~unperturbed!
ring, andR0(p) is given by Eq.~3!. Then inserting this equa
tion into Eq.~1!, to linear order ine we find

de

dt
52

an2

r 2 e. ~C2!

Sincee21de/dt is negative for alln, the perturbations deca
to zero. ~The parametera is positive for most systems o
experimental relevance. When it is negative@21,27#, or when
the gradient is sufficiently strong, the ring tends to grow a
perturbations do not decay.! Although e goes to zero, the
ring itself may shrink as well, and for shape stability w
actually neede/r to go to zero. Analysis of Eq.~C2! shows
that this condition holds for alln.1. For the casen51, the
binormal perturbation is equivalent to a rotation of the rin
and can be absorbed by a redefinition ofu.

FIG. 8. Filament images, showing stability of the planar, circ
lar ring. These figures were obtained by integrating the full diff
ential geometry equations~1! by discretizing the filament with 256
points and numerically integratingdR/dt. The initial conditions
were a ring with both normal and binormal perturbations. At
520, the perturbations have noticeably shrunk, and byt590, the
filament has almost returned to its planar, circular shape.
,
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